
Journal of Biomechanics 35 (2002) 739–746

Synergic analysis of upper limb target-reaching movements
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Abstract

The topological invariance and synergies of human movements are discussed through the analysis and comparison of upper-limb

target-reaching tasks. Five subjects were asked to perform different target-reaching tasks with different indices of difficulty, and the

movements were captured using a Vicon 3D motion analysis system.

Topological invariance was observed in the trajectories of different task performances. After normalization, the trajectories of the

arm tips had very close patterns for different target-reaching tasks. Synergy in the target-reaching movements of the upper limbs was

also found among the different joint angles. The joint angles can be fitted using the same format of functions proposed in this study.

The parameters in the function can be taken as a characteristic feature of target-reaching movement patterns. A target-reaching

movement can be determined by these parameters and the start and end positions. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Researchers and clinicians have been interested in
understanding the kinematics and kinetics of the upper-
limb system for many years (Anglin and Wyss, 2000;
Buckley et al., 1996). Understanding of the activities of
daily living is required for the design of good orthoses or
prostheses and provides input to biomechanical models.
Due to the variability and complexity of the tasks, the
nature of free arm movements is different from the
human gait, which is restricted, repeatable or cyclic
(Rau et al., 2000). There are no standard activities for
the arm. If arm motion analyses become routinely used
for diagnosis or rehabilitation evaluation, a set of
discriminating (i.e. normal versus pathological) tasks
or a set of desired functional tasks should be established.

The variability and flexibility of upper-limb move-
ments reflect the mechanical redundancy of the muscu-
loskeletal system. Typically, the human arm, involving
three major joints: shoulder, elbow and wrist, contains
seven degrees of freedom. Most natural activities, such
as reaching, walking, writing, etc., require coordination
among muscles and joints.

By coordination among the movement motors, hu-
mans can control the great complex redundancy system
perfectly. How the nervous system determines in what
way to perform a given motor task in order to achieve
the desired behavioral goals has long aroused the
curiosity of researchers. This problem posed in motor
redundancy was first recognized systematically by
Bernstein (1967), who defined redundancy as being
when more than one motor signal can lead to the same
trajectory of a given motor system. Identical motor
signals can lead to different movements under non-
identical initial conditions or in the presence of
variations in the external force field. Bernstein also
defined motor coordination as the process of mastering
redundant degrees of freedom of the moving organ, in
other words its conversion to a controllable system
(Bernstein, 1967). Determining how this conversion
process takes place is known as Bernstein’s problem.

Bernstein proposed that the motor apparatus was
functionally organized into synergies or classes of
movement patterns. Synergies are classes of movement
patterns involving collections of muscle or joint
variables that act as basic units in the regulation and
control of movement. Synergies are used by the nervous
system to reduce the number of both controlled
parameters and afferent signals needed to generate and
guide an ongoing movement. Certain synergies are often
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study has the same or even better error level of the fifth
order polynomial fitting. Higher order polynomial or
other complex techniques may get the better fitting

results, but the number of the fitting parameters will
increase, and the parameters in such techniques (such as
high-order polynomial) do not have such regularity as
parameters in Eq. (7) (scaling and translating para-
meters). It is difficult to use them to describe and define
the synergies.

Fig. 9. Curve fitting for angles.

Table 3

The parameters for the curves fitting

Angles AZ EF EL FR RL

A 0.3000 0.1000 0.7500 0.0100 1.5000

k1 1.0077 0.5270 0.6761 0.5030 0.795

k2 1.5708 4.7124 �4.7124 4.7124 �4.7124

b1 �0.0077 0.5280 0.6760 0.5027 0.7960

b2 0 0 4.7124 0 4.7124

Table 4

The variances of the errors of fitting the angle curves

Angles AZ EF EL FR RL

Cov(a) 0.0010 0.0035 0.0030 0.0025 0.0026
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The results in this paper can be widely used in many
fields. The function description of arm movements can
largely reduce the parameters required to simulate arm
motion, and to control a powered upper-limb orthosis
or robot arm.

5. Conclusion

It can be concluded that topological invariance and
synergies can be found in target-reaching movements of
human upper limbs. The joint angles of the upper limb
can be described in the same format of functions. The
movements can be determined by the parameters,
together with the start and end positions. The above
results can be applied widely in biomechanical modeling,
orthoses design, control theory and rehabilitation
evaluation.
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